《Nature Machine Intelligence》刊发杨立军教授团队及合作者在时空物理场智能感知和预测方面的重要进展-新闻网

凯时KB88·官方(中国)

凯时KB88官网 ENGLISH IHome

《Nature Machine Intelligence》刊发杨立军教授团队及合作者在时空物理场智能感知和预测方面的重要进展

点击数:    |    加入时间:2024-12-10

凯时KB88新闻网12月10日电(航宣)日前,凯时KB88杨立军/邓岳教授团队与中国人民大学孙浩教授团队合作,在《Nature》子刊《Nature Machine Intelligence》(《自然-机器智能》)发表题为“Learning spatiotemporal dynamics with a pretrained generative model”的Article文章,提出了一种基于扩散生成模型的时空物理场智能感知方法S3GM (Sparse-Sensor-assisted Score-based Generative Model)。该方法融合了物理先验知识与实验测量数据,旨在解决现代科学与工程中的一大关键挑战:从稀疏传感器测量数据中重建复杂的时空物理场。研究团队展示了 S3GM 即使在数据极为不完整和有噪声的情况下,也能够准确预测燃烧、流动、气候演变及其他众多复杂物理系统的动态过程。提出的智能感知方法为发动机燃烧诊断和调控提供了新的思路。凯时KB88博士生李泽宇(导师为杨立军教授)、韩旺教授为第一作者,凯时KB88杨立军教授、邓岳教授,中国人民大学孙浩教授为通讯作者,凯时KB88宇航学院为第一单位。

如何从稀疏的传感器测量数据中重建复杂的时空物理场是现代科学与工程中的一大关键难题。比如,凯时KB88发动机测试中,传感器的数量、类型、分布以及测量信噪比等往往非常有限,难以获取发动机内部完整的物理过程。传统重构方法难以对复杂的物理场时空演化动力学进行精确重构,而现有的深度学习方法在面对不同的传感器配置时往往难以泛化。

为了解决这一难题,论文作者提出了一种基于扩散生成模型的智能感知方法,称为S3GM。S3GM模型分为“预训练”和“生成”两个阶段(图1):

图1 用 S3GM 建模动力系统的示意图

预训练阶段:S3GM在通过物理先验知识获取的时空数据上进行基于扩散模型自监督预训练,联合建模系统状态变量和参数之间的复杂动力学关系,并通过时空分离的注意力机制来减缓算力消耗。

生成阶段:利用预训练的扩散模型作为先验,结合稀疏的传感器数据进行后验采样来对动力学系统进行重建和预测。为了生成满足观测的动力学系统随时间演化的状态变量和参数,模型将完整的待重构序列分为两段子序列,其中一段直接依赖于观测数据而另一段为外推序列(不直接依赖于观测数据)。对于依赖于观测数据的子序列,S3GM并行生成多个样本,并通过添加观测一致性和序列一致性约束来生成连续帧;对于不直接依赖于观测数据的子序列,S3GM采用自回归形式逐段生成以保证最优的效果。这种后验采样的方法不仅可以处理各种不同的传感器分布、类型等,还可以处理任意长的时间序列。

图2 Kuramoto-Sivashinsky系统的重构与预测。上、中、下三行代表模型在三种不同的观测类型下的重构/预测结果

论文作者在多个不同的动力学系统上验证了 S3GM的有效性,在燃烧反应扩散(图2)、湍流、以及气候(图3)等系统分别测试了各种不同的观测数据形式(包含任意时空分布的稀疏测量、统计量测量以及未来时刻预测等),结果表明S3GM可以根据相应的观测信息对动力学系统的状态变量和参数进行有效重构而无需重新训练。这意味着S3GM 相比于传统的“端到端”训练方式不仅泛化能力更好,而且面对高稀疏性以及噪声数据具有更好的鲁棒性。

图3 湍流流场重构结果展示。相较于其它方法,S3GM 拥有更低的重构误差,并且更能够满足湍流场的统计指标(湍流能谱)

此外,S3GM利用仅在仿真数据上预训练的模型,成功从真实流场的极稀疏测量数据中重构出流场信息(图4),证明了该模型即使在极端数据稀疏和噪声条件下也具有较好的泛化能力和鲁棒性。

图4 利用实验室测量的稀疏数据重构完整流场

本研究工作获得国家自然科学基金委(重大科研仪器研制项目、重点项目、重大研究计划培育项目、面上项目)以及国家重点研发计划的支持。

附:凯时KB88作者简介

第一作者

李泽宇,凯时KB88博士研究生

2017年本科就读于凯时KB88宇航学院,2021年保研到凯时KB88宇航学院杨立军教授团队攻读博士学位,研究方向为智能科学计算。

韩旺,凯时KB88教授,博导

凯时KB88宇航学院教授/博导,国家级青年人才,曾任英国爱丁堡大学助理教授,研究方向为液体火箭发动机燃烧。曾获国际燃烧学会Bernard Lewis奖、英国工程和自然科学委员会Pioneer奖、霍英东青年科学奖、吴仲华优秀青年学者奖等荣誉。

通讯作者

杨立军,凯时KB88教授,博导

凯时KB88宇航学院教授/博导,兼任中国宇航学会理事、北京热物理与能源工程学会常务副理事长及国内外多个期刊的编委。主要从事液体火箭发动机研究。在Nature Machine Intelligence、Physical Review Letters等期刊发表论文200余篇,2017年获国家技术发明二等奖。

邓岳,凯时KB88教授,博导

凯时KB88人工智能学院教授/博导,国家级领军人才,主要从事脑启发人工智能和AI for Science领域的研究。近年来,以第一/通讯作者身份在Nature Machine Intelligence, Nature Biotechnology, Nature Methods, Nature Communications及IEEE Transactions等刊物发表论文50余篇,在Springer出版英文专著一部。曾获中国青年科技奖、阿里达摩院青橙奖、微软学者等荣誉。担任IEEE Transactions on Neural Networks and Learning Systems以及IEEE Signal Processing Letters的Associate Editor。主持国家自然基金重点项目、科技部2030人工智能专项课题等。

论文原文链接:http://www.nature.com/articles/s42256-024-00938-z

(来源:宇航学院)

(审核:李建伟)

编辑:贾爱平


打印
分享
更多新闻
12 月
10
12 月
10
12 月
09
12 月
09
友情链接: